Average Update Times for Fully-Dynamic All-Pairs Shortest Paths

نویسندگان

  • Tobias Friedrich
  • Nils Hebbinghaus
چکیده

We study the fully-dynamic all pairs shortest path problem for graphs with arbitrary non-negative edge weights. It is known for digraphs that an update of the distance matrix costs Õ(n) worst-case time [Thorup, STOC ’05] and Õ(n) amortized time [Demetrescu and Italiano, J.ACM ’04] where n is the number of vertices. We present the first average-case analysis of the undirected problem. For a random update we show that the expected time per update is bounded byO(n) for all ε > 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fully Dynamic Algorithms for Maintaining All-Pairs Shortest Paths and Transitive Closure in Digraphs

This paper presents the first fully dynamic algorithms for maintaining all-pairs shortest paths in digraphs with positive integer weights less than b. For approximate shortest paths with an error factor of (2 + ), for any positive constant , the amortized update time isO(n2 log n= log logn); for an error factor of (1 + ) the amortized update time is O(n2 log3(bn)= 2). For exact shortest paths t...

متن کامل

Fully Dynamic All Pairs All Shortest Paths

We consider the all pairs all shortest paths (APASP) problem, which maintains all of the multiple shortest paths for every vertex pair in a directed graph G = (V,E) with a positive real weight on each edge. We present a fully dynamic algorithm for this problem in which an update supports either weight increases or weight decreases on a subset of edges incident to a vertex. Our algorithm runs in...

متن کامل

Average Update Times for Fully-Dynamic All-Pairs Shortest PathsI

We study the fully-dynamic all pairs shortest path problem for graphs with arbitrary non-negative edge weights. It is known for digraphs that an update of the distance matrix costs O(n2.75 polylog(n)) worst-case time [Thorup, STOC ’05] and O(n2 log(n)) amortized time [Demetrescu and Italiano, J.ACM ’04] where n is the number of vertices. We present the first average-case analysis of the undirec...

متن کامل

All - Pairs Shortest Paths in O ( n 2 ) Time with High Probability

We present an all-pairs shortest path algorithm whose running time on a complete directed graph on n vertices whose edge weights are chosen independently and uniformly at random from [0, 1] is O(n2), in expectation and with high probability. This resolves a long-standing open problem. The algorithm is a variant of the dynamic all-pairs shortest paths algorithm of Demetrescu and Italiano [2006]....

متن کامل

Fully Dynamic All Pairs Shortest Paths with Real Edge Weights

We present the first fully dynamic algorithm for maintaining all pairs shortest paths in directed graphs with real-valued edge weights. Given a dynamic directed graph G such that each edge can assume at most S different real values, we show how to support updates in O(n2.5 √ S log n ) amortized time and queries in optimal worst-case time. No previous fully dynamic algorithm was known for this p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 159  شماره 

صفحات  -

تاریخ انتشار 2008